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Abstract. Extended finite-size scaling and series expansion methods are used to determine 
the critical properties of the one-dimensional quantum Ising model with three-spin interac- 
tion. Supposing the presence of logarithmic corrections the universality class of the model 
is investigated. Our results obtained by different methods support the conjecture that the 
model belongs to the same universality class as the four-state Potts model. 

1. Introduction 

Recently we have witnessed a growing interest in the study of models with multiparticle 
interactions. These models are thought to be relevant in various physical systems such 
as 3He (Roger et a1 1983), adsorbed systems (Kittler and Benneman 1979) and plasmas 
(Held and Deutsch 1981). The theoretical models with many-body interactions differ 
in some aspects from those with nearest-neighbour coupling. The critical properties 
generally depend on the range of the interaction. Due to the presence of long-range 
forces the numerical study of these models is more difficult. Therefore much less 
information is known about the critical behaviour of the multispin interaction models. 

Recently Turban (1982), and independently Penson et a1 (l982), have introduced 
a class of multispin interaction models, which enables one to investigate systematically 
the role of the range of the interaction on the critical properties. The model is a 
generalisation of the one-dimensional quantum Ising model arid defined by the follow- 
ing Hamiltonian: 

m-1 

where u7 and uf are the Pauli matrices at the ith lattice site. The model is self-dual 
(Turban 1982, Penson et a1 1982), the self-dual point is A *  = 1 independently of the 
value of rn. It is generally believed that only one phase transition takes place in the 
system (at which the degeneracy of the ground state is changing by a factor of 2m-'). 
Thus A *  coincides with the critical point of the system. 

The model can be solved exactly in two cases: 
( i )  For rn = 2 the model undergoes a second-order transition with Ising critical 

(i i)  In the limit rn + 00 the mean-field solution becomes exact and shows a first-order 
exponents (Pfeuty 1970). 

transition (Turban 1982, Penson et a1 1982, Maritan et a1 1984). 
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Consequently the transition should change from second order to first order at some 
intermediate value of m = m,. In some two-dimensional models, and  in their Hamil- 
tonian version (like q-state Potts model, n-component cubic model) the transition 
turns from second order to first order, when the degeneracy of the ordered phase 
exceeds four (Baxter 1973, Nienhuis er a1 1983, Igl6i 1986a). In this analogy Debierre 
and Turban (1983) conjectured that m, = 3. Furthermore Debierre and Turban (1983) 
also conjectured that the m = 3 model belongs to the same universality class as the 
four-state Potts model. 

The first conjecture has recently been verified by Igloi er a1 (1986) using the strong 
and weak coupling expansion method, and by Blote et a1 (1986b) using the Monte 
Carlo technique. However the situation in the verification of the second conjecture is 
more controversial. The results of the first numerical investigations by finite-size scaling 
(Penson er a1 1982, Igl6i er a1 1983, Debierre and  Turban 1983, Kolb and  Penson 
1986) by the renormalisation group method (Igl6i er a1 1983, Vanderzande 1984) and 
by series expansions (Iglbi er a1 1986) are significantly different from those of the 
four-state Potts model. However, very recently Blote et a1 (1986b) have shown that 
there exists an  exact mapping between the very anisotropic limits of the two models. 
They considered the classical Ising model on a square lattice with two-spin interaction 
in the horizontal direction and with three-spin interaction in the vertical one. Taking 
the time continuum limit (Kogut 1979) by using the horizontal direction as the time 
axis one reobtains the model in (1.1) for rn = 3, while by choosing the other direction 
as time axis one obtains the Hamiltonian version of the four-state Potts model (Sblyom 
and Pfeuty 1981). Blote et a1 (1986b) also performed MC simulation and by taking 
into account the effect of logarithmic corrections they obtained critical exponents 
which are approaching the four-state Potts values when the size of the system is 
increasing. However, due  to the strong effect of the confluent logarithmic singularity 
the accuracy of the determination of the critical exponents was rather small. Therefore, 
there is a need to investigate the question of the universality class of the M = 3 model 
by other methods as well. 

In  this paper finite-size scaling is used for the specific heat, for the susceptibility 
and for the gap of the model. Furthermore the method of universal amplitudes is 
applied for the spin-spin and  for the energy-energy correlation function. The strong 
and weak coupling expansion for the ground-state energy is extended up  to sixteenth 
order. The results of the different methods are analysed by taking into account the 
presence of logarithmic corrections in the same form as in the four-state Potts model 
(Nauenberg and Scalapino 1980, Cardy er a1 1980). The paper is organised as follows. 
The results of the finite-size scaling and the series expansion are presented in 00 2 and 
3, respectively. These sections also contain the results of the analysis by neglecting 
the effect of logarithmic singularities. In 0 4 the analysis of the results is repeated by 
taking into account logarithmic corrections. Finally in § 5 there is a short discussion. 

2. Finite-size scaling and the method of universal amplitudes 

In the study of the critical properties of Hamiltonian systems the determination of the 
energy of the ground state ( & ( A ) )  and the energy of the first excited state ( E , ( A ) )  is 
of great importance. The energy gap 

(2.1) A ( A )  = E,(A 1 -Eo(A) 
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governs the correlation behaviour of the system, and shows a power law singularity 
in the vicinity of the critical point A *  = 1: 

A ( A ) - l A  - A * / - ” .  (2.2) 

The specific heat behaves as 

1 a2E, 
C(A) =- -- IA - A * / - ”  

L a h =  
(2.3) 

( L  is the number of lattice sites.) 
The zero-field susceptibility is defined in the presence of a longitudinal field: 

as 

A powerful method to determine the critical properties of the infinite system is to 
perform the calculation for finite systems with linear size L and then use the finite-size 
scaling hypothesis (Barber 1983). According to this hypothesis a physical quantity 
$ ( A ) ,  which has a power law singularity at the critical point with exponent 

(2.6) 

@ L ( A )  = Ld’”Q,(L/S) (2.7) 

where 6 is the correlation length in the infinite system and Q$ is some function 
depending on 9. In particular, at the critical point I L L  should only depend on L through 
the power + / v .  

$ ( A )  - / A  - A * / - d  

for finite systems asymptotically behaves as 

Thus as special cases the specific heat and the susceptibility behave as 

C,( 1) - r d + * ’ t  (2.8) 

X L (  1) - L - d + 2 ‘ h  (2.9) 

Here the hyperscaling relations 

(2.10) 

are used. (In the present quantum system the effective dimension d = 1 + z, where z = 1 
is the dynamical exponent.) 

Another possibility of determining y ,  is to calculate it from the derivative of the gap 

(2.11) 

Finally we show that one may obtain a further independent relation between y, 
and yh by using the method of universal amplitudes (Luck 1982, Nightingale and Blote 
1983, Cardy 1984, Penson and Kolb 1984, Burkhardt and Guim 1985, Gehlen et a1 
1986). Let 0 be some operator (energy, spin, etc) of the system and define the gap 
A f ( A )  between the ground state 10) and the first excited state IF,) of the system for which 

(PlI0lO) # 0. (2.12) 
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This gap behaves at A = A *  as 

lim LA:( 1) = c27rx0 (2.13) 
L - x  

where xg is the anomalous dimension, for which 

xQ+ ye = d (2.14) 

and c is some constant. (If the system is conformally invariant-which is probably 
the case with the present model (Kolb and Penson 1986)-then c = U,, where U, is the 
sound velocity of the single-particle excitation spectrum E, (  k )  - Eo = u,k (Blote et a1 
1986a).) 

Now we focus on the gap of the energy operator (denoted by A:(,+)) and on that 
of the spin operator ( A k ( A ) ) .  From (2.13) one can deduce that 

(2.15) 

obtaining an extra relation between y ,  and y,. 

2. I .  Results for the multispin-coupling model 

In the calculation periodic boundary conditions were used. In order to maintain the 
symmetry of the Hamiltonian in (1.1) the system sizes were chosen as L = 3 x 1, where 
1 is an integer. 

The numerical calculation of & ( A )  and E , ( A )  were performed for systems up to 
L = 15 by using the Lanczos algorithm (Wilkinson 1965, Whitehead et a1 1977). The 
specific heat and the susceptibility were obtained by numerical differentiation according 
to (2.3) and (2.5). 

The result for the critical exponents obtained by two-point fits from (2.8), (2.11) 
and (2.9) are given in table 1, together with the values of the four-state Potts model 
(den Nijs 1979, Pearson 1980, Nienhuis et a1 1980). (For the largest system size the 
susceptibility is too big to be determined accurately from numerical differentiation.) 
As is seen in table 1, while yh agrees with the four-state Potts value within the accuracy 
of the calculation, the values for y ,  seem to tend to a significantly different value, 
which is close to 3 obtained by other numerical methods as well (Penson et a1 1982, 
Igl6i et a1 1983, 1986, Debierre and Turban 1983, Vanderzande 1984, Kolb and Penson 
1986). 

Similar conclusions may be deduced from the results of the method of universal 
amplitudes (table 2). The RL ratios defined by (2.15) seem to tend to a value of close 
to 5, which would be compatible with y,, = 1 1  and y, = 8. 

Table 1. Critical exponents calculated by two-point fits from the finite-size data of the 
specific heat, the gap and the susceptibility. 

(6,3) 1.64 1.28 2.05 
(9,6) 1.47 1.32 1.89 
(12,9) 1.43 1.33 1.85 
(15, 12) 1.41 1.33 

Potts q = 4 312 312 1.875 
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Table 2. Ratio of the universal amplitudes for finite systems. 

3 7.856 
6 5.310 
9 5.219 

12 5.148 
15 5.089 

Table 3. Thermal exponent y ,  and logarithmic correction strength p obtained by three-point 
fit from finite-size data of the gap. 

(L+6, L+3, L )  Y ,  P 

Closing this section we present the results of the analysis supposing a general form 
for the confluent logarithmic singularity as 

The exponents y ,  and p, calculated by three-point fit, are presented in table 3. 
According to these data it seems possible that the model belongs to the same universality 
class as the four-state Potts model. This question will be investigated in more detail 
in § 4, where the confluent logarithmic singularity is taken in the same form as in the 
four-state Potts model. 

3. Analysis of the strong and weak coupling series 

The critical properties of the model are now investigated by the analysis of the strong 
coupling series for the ground-state energy 

Eo( A ) = -2 akh '. (3.1) 
k 

(Due to self-duality the coefficients of the strong and weak coupling series are identical.) 
In this paper the results of Igldi et al (1986) are extended up to sixteenth order. 

The coefficients of the strong coupling series for the specific heat are given in table 
4, together with the estimates for the (Y critical exponent obtained by the ratio method 
(Gaunt and Guttmann 1974). The analysis of the series by the Dlog Pad6 method 
(Gaunt and Guttmann 1974) gives similar results, as is seen in table 5 .  Finally the 
scaling method proposed by Igl6i (1986b) is applied to deterniine the a exponent. In 
this method the relation is used that the series of the latent heat (Igloi et a1 1986) 

(3.2) 
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Table4. Strongcoupling series coefficients for the specific heat and estimates for the (2 

exponent from the ratio method. 

Order Coefficient 

0 
2 
4 
6 
8 

10 
12 
14 

1/3 

0.168 209 88 
0.140706 16 
0.124 135 67 
0.1 12 042 23 
0.102 978 99 
0.095 851 20 

219 
0.6667 
0.5139 
0.5095 
0.5289 
0.5129 
0.5147 
0.5156 

Table 5. Pad6 analysis of the logarithmic derivative of the specific heat. 

2 3 4 5 

1 0.5783 0.5587 0.5552 0.5482 0.5444 
2 0.5519 0.5544 0.5621 0.5396 0.5365 
3 0.5542 0.5525 0.5282 0.5365 
4 0.5535 0.5954 0.5357 
5 0.5413 0.5377 
6 0.5315 

tends to zero as n-"-"' for large values of n. The evaluation table of the method for 
the a exponent is given in table 6. By comparing the results of the different methods 
of analysis one may conclude that the estimates lay in a region of 0.5 < a ~ 0 . 5 5 .  The 
corresponding y ,  exponent from the hyperscaling relation (2.10) would be y, = 
1.36 f 0.03, in accordance with the earlier estimate (Igl6i et a f  1986) and with the result 
obtained in the previous section by neglecting the logarithmic corrections. However 
the estimates of the different methods are somewhat different and the results within 
one method show some systematic alternation. These facts may signal the presence 
of some strong confluent singularities. 

To investigate the possible presence of a logarithmic confluent singularity of the 
specific heat in the general form of 

Table6. Analysis of the series of the latent heat by scaling method: estimates for the a 
exponent. 

3 4 5 6 7 

1 0.5270 0.5314 0.5324 0.5338 0.5352 0.5365 
2 0.5391 0.5367 0.5379 0.5392 0.5404 
3 0.5332 0.5377 0.5402 0.5419 
4 0.5438 0.5448 0.5457 
5 0.5460 0.5469 
6 0.5480 
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(similar to (2.16)) the method of Adler and Privman (1981) is applied. In this procedure 
the p exponent is determined by the Dlog Pad6 method for fixed values of a. The 
different Pad6 approximants for p as a function of (Y are plotted in figure 1. One can 
see that within the region denoted by the broken line the error in the Pad6 table is 
minimal. The possible estimate a = 0.48 * 0.02 and p = 0.18 * 0.05 are different from 
those of the four-state Potts model: a = f  and p = -1, and is in contrast to the results 
obtained by finite-size scaling in the end of the last section. The possible reason is 
that the structure of the confluent singularities is different in the two methods and it 
is very important to choose the accurate form of the logarithmic singularity in the 
series analysis method. It will be shown in the next section that one may obtain better 
agreement, if the form of the logarithmic correction is taken more accurately. 

0.3. 

0.2. 

P 

0.1 . 

Figure 1. The method of Adler and F’rivman (1981) applied to the series of the specific 
heat. The various Padt approximants for the strength of the logarithmic correction p is 
plotted as a function of a. Within the rectangle the error in the Padt table is minimal. 

4. Logarithmic corrections 

The equivalence of the three-spin coupling model to the four-state Potts model implies 
the presence of similar logarithmic corrections. In the case of the Potts model these 
logarithmic corrections are associated with a marginal scaling field (denoted by JI), 
which appears besides the two relevant scaling fields: temperature ( t )  and magnetic 
field (h) .  

According to Nauenberg and Scalapino (1980), Cardy et a1 (1980) and Blote and 
Nightingale (1982) the scaling form of the free energy in a finite system close to the 
critical point obeys the following scaling relation: 

where b is the rescaling factor and 
f ( t ,  h, JI, L )  - b-2f(Z3’4b3/2t, z1/16b’5’sh, Z G ,  L / b )  (4.1) 
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The non-universal constant Jl(0) stands for the value of Jl at the critical point of the 
Potts model. Similarly any gap of the spectrum should obey the following scaling 
relation: 

A(t, h, Jl, L) - b - ' A ( ~ ~ / ~ b ~ / ~ t ,  ~ " ' ~ b ' * / ~ h ,  z+, L/b).  (4.3) 

From relations (4.1) and (4.3) it is easy to deduce that the specific heat, the susceptibility 
and the gap scales at the critical point as 

(In the Hamiltonian version the inverse of the coupling A- '  plays the role of the 
temperature.) 

The critical exponents obtained from these relations can be expanded in powers 
of l / ln L in the following way: 

+.. .  . +- 1 1  
16 In L (In L)2 

b2 
Yh ( L )  = Yh -- - 

Here y,(L) and yh(L) denote the result of the two-point fit. For example 

(4.5) 

and a, and 6, are non-universal constants. 
Similarly one may also expand the ratio of the universal amplitudes in (2.15): 

+... . RL= R+-+- 4 c2 

In L (In L)* (4.7) 

A convenient way to apply relations (4.5) and (4.7) is to plot $ ( L )  = y,(L)+i(ln L)-' 
and R;= RL-4(ln L)-' against (In L)-2,  and then to extrapolate to the L+co case. 
(Such an extrapolation is not performed for yh, since the yL(L) values show oscillatory 
behaviour. Furthermore the effect of logarithmic corrections in this case is much 
smaller.) 

In figure 2 the y:(L) exponents calculated from the specific heat and from the gap 
are plotted. As it is seen y:( L) obeys the relation (4.5) in both cases and the extrapolated 
values y ,  = 1.50*0.02 are consistent with the Potts value. A sinilar plot of the RL 
quantities are given in figure 3. The extrapolated value is R = 4.0k0.05 which is also 
in agreement with the four-state Potts value R = 4. 

Finally the specific heat series given in 0 3 is reanalysed using the accurate form 
of the confluent singularity (Nauenberg and Scalapino 1980): 

(4.8) 
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2.0 I 

Figure2. The y ;  = y , ( L ) + f ( l n  L)-' effective exponent as a function of (In L)-2 .  Crosses 
and circles denote the values obtained from specific heat data and from the derivative of 
the gap, respectively. 

Figure 3. The R ;  = R ,  - 4(ln L)-' ratio as a function of (In L ) - 2 .  

Taking the estimate $(O) = -3.05 1.0 that one may obtain from the finite size scaling 
data, the Pad6 analysis predicts 

which lays close to the four-state Potts value a =f. 
a = 0.71 5 0.03 (4.9) 

5. Discussion 

In this paper the critical properties of the quantum Ising model with three-spin 
interaction is studied by finite-size scaling and series expansion. The earlier investiga- 
tions were extended to other quantities, larger system sizes and longer series. Further- 
more the method of universal amplitudes was also applied. The central problem of 
the paper is to determine the universality class of the model, whether it can be 
characterised with the same critical exponents as that of the four-state Potts model. 
To answer to this question the results of the calculations were analysed by different 
methods: (i)  neglecting the confluent logarithmic singularities, (ii) supposing a general 
form for these corrections, or (iii) taking these singularities in the same form as in the 
four-state Potts model. 
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The results of the standard analysis (y, = 1.37, y h  = 1.87) are in accordance with 
the findings of the earlier investigations. However, supposing a general form for the 
logarithmic corrections, one may predict the presence of strong corrections from the 
finite-size scaling results. Repeating the analysis with corrections in the same form as 
in the four-state Potts model the exponents become consistent with the four-state Potts 
critical behaviour. Since all methods used in this paper (finite size scaling, method of 
universal amplitudes, series expansion) give consistent results, we consider our findings 
as support to the validity of the mapping of the two models (Blote et a1 1986b) and 
supporting evidence for the conjecture that the three-spin coupling model belongs to 
the four-state Potts universality class. 
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